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A General Method of Approximation. Part I 

By Staffan Wrigge and Arne Fransen 

Abstract. In this paper we study two families of functions, viz. F and H, and show how to 
approximate the functions considered in the interval [0, 1]. The functions are assumed to be 
real when the argument is real. 

We define 

F{f; (i) f(' + X) = f(2 -X), (ii) f(O) = f(]) = 0, 

(iii) f(x) is analytic in a sufficiently large neighborhood of x-O}, 

H = {h; (j) hQ + x) = -h x), (jj) h(0) = h(1) = 0, 

(jjj) h (x) is analytic in a sufficiently large neighborhood of x- 0}. 

The approximations are defined in the interval [0, 1] by 

JO 

I 
AX ). E Cnf k[X( 1 -_ -x )q dx 

and 

k2 

min h(x) - (I -2 
X 

Cn,k[x(1 -x)] 

n 
Xq(l X) qdX, 

whereqe{0,1,2,...}. 
The associated matrices are analyzed using the theory of orthogonal polynomials, especially 

the Jacobi polynomials G,1( p, q, x). We apply the general theory to the basic trigonometric 
functions sin(x) and cos(x). 

Introduction. This paper traces its origin from a wish to determine simple, accurate 
and rapid approximations of the basic trigonometric functions sin(x) and cos(x). 
We encountered this problem when repeatedly applying the Box-Muller transforma- 
tion for generating bivariate normally distributed pseudo-random variates. But as is 
often the case when starting with an analysis of a special example one discovers an 
underlying more general pattern. The method found by us in [6], when approximat- 
ing sin(x) and cos(x), could thus be applied to a much wider class of functions; see 

[7]. 
When measuring the "distance" between the functions and their approximations 

we use the L2-norm. The required coefficients can then be determined from the 
resulting linear equation system. 

The calculation of accurate values of the required coefficients is difficult. The 
associated Hankel matrices are as usual almost singular. We solve this problem by 
explicit calculation of the inverse matrices. The necessary numerical values of the 
associated integrals are determined using high-precision techniques. 
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Once recognized as "moment-matrices" the resulting Hankel matrices can be 
analyzed using the theory of orthogonal polynomials (especially the Jacobi- 
polynomials Gj(p, q, x) with associated weight function w(x) - (1 - qXq- , 
x E [0, 1]). Empirically observed peculiarities can then be proved, and results can be 
generalized. 

An even more thorough analysis of the methods used in [7] revealed that Bernstein 
polynomials were involved. That made it possible to further generalize the methods 
in [7]. The results thus found (see [8]) will be presented in part II. 

The approximation method presented here consists of two parts. One can be 
solved once and for all (i.e., inversion of the associated matrices), the other part 
involves calculation of some integrals associated with the approximated functions. 

1. Certain General Expansions. 
a. The Symmetric Case. We state the main result of this section in the following 

THEOREM 1. Let f(x) be a function with the following characteristics: 
(i) f(4 + x) = f(4 - x), f(x) is real when x is real, 

(ii)f(O) = f(l) = 0, 
(iii) f(x) may be expanded in a Taylor series around x = 0, and the radius of 

convergence is greater than 1. 
Then f(x) has an expansion of the form f(x) = ?= am[x(I - x)]m valid at least in 
the interval [0, 1]. Expressions for the coefficient am are given by Eqs. (1.3), (1.6), and 
(1.9). 

To prove Theorem 1 we expand f(x) in a Taylor series around x 4, i.e., 

(1.1) f(x) = f(2 )! (x - 2 
n=0 (2n)!I 

where we have 

(X- 2) [I - 4x(1 -x)]= 2 (%)( 1)k4[x(1 x)]k. 

Putting 
00 

(1.2) f(x) = 2 am[x(l - x)]M 
m1I 

we get 

(1.3) am (1)m (2v)! vm - 

To proceed we also need the identity 
[ n/21 n 

(1.4) (1_x)n+Xn = 2 
n - 

k )_ I-)k[x(I -x)]k 
k=On k 

(1.4) is easily proved using Lagrange's inversion formula; see [6, p. 13]. 
From (i) we conclude that 

(1.5) f(x) + f(I - x) = 2f(x). 
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Using (1.5) and the expansion in (1.4) we get 

00 f(n)(0) [n/2] (n -k 
n=1 k= 

An alternative expression of the coefficient am is then 

(1.6) am = n m (nmm)(l)mnK( 
n=2m 

Writing 
_ f (V)(o) 

_00 

f(x) - ( v am[x(l0x)] 
v=1 m=1 

and identifying corresponding powers of x, we get the equation system 

(1.7) n(! -2 n-2v)(-1) an-v n = 1,2,3,.... 

The solution of this equation system may be obtained using Lagrange's inversion 
formula. Thus 

(1.8) am=m!y{d1 [(1 

which may be written 

(1.9) am = (v) m(m )! )(o) 

Now suppose that g(x) is any analytic function satisfying only the condition (iii). 
Then we may put f(x) = g(x-4) + g(2 - x) - g(- )-g(4). We notice that 
f(x) is symmetric around x 4 I, and f(O) = f(1) = 0. 

Example. We may expand 
00 

(1.10) et(x-1/2) + e-t(x-1/2) = et/2 + e`12 + 2 a [x(l -XAM 
m=I 

where the coefficients am satisfy the recurrence relation 

(1.I1) (n + 2)(n + I)an+2 (2n + 2)(2n + I)an+1 + t2an, 

with starting values aO = 2 cosh(2 4t), a, = -2t sinh(4 t). O 
Another more general possibility is to consider 

f(x) = G(g(x), g(l - x)) - G(g(O), g(l)), 
where G(x, y) is any regular and symmetric function (i.e. G(x, y) = G(y, x)). 
Evidently we have f(4 + x) = f(4-x) and an expansion of the form 

00 

(1.12) f(x) =2 am[x(l -x)] 
m l 

Suppose that g(x) satisfies a functional relation of the form g(l - x) = 
H(g(x), F(x)) where H(x, y) and F(x) are "simple" functions. Approximating in 
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the L2-norm, as indicated in Section 2a, we get a relation of the form 
k 

G(g(x), H(g(x), F(x))) - G(g(O), g(l)) 2 Cn,,k[X(l -X)] 
n= I 

If G(x, y) and H(x, y) are simple functions, we may sometimes solve the "identity" 
with respect to g(x), which enables us to calculate g(x) even if the function does not 
satisfy the conditions (i) and (ii). 

Example. We put G(x, y) = x + y and g(x) = 1/17(1 + x). Then g(x) satisfies 
the relation g(x)g(l - x) = sin('7x)/17x(1 - x). 

Approximating in the L2-norm we get a relation of the form 

( +F(1 + x)sin(Tx) k2+ z cf,k[x( ) (.1) 
F( + x) 

+ 
7Tx( - x) 

2 I nk X]n 

b. The Antisymmetric Case. The theorem corresponding to Theorem 1 is 

THEOREM 2. Let h(x) be a function satisfying the conditions 

(j) h(' + x) = -h(4 - x), h(x) is real when x is real, 
(jj) h(O) = h(l) = 0, 
(jjj) h(x) may be expanded in a Taylor series around x = 0, and the radius of 

convergence is greater than 1. 
Then h(x) has an expansion of the form h(x) = (1 - 2x) ?I'bm[x(I - x)]m valid 
at least in the interval [0, 1]. Different expressions for the coefficients bm are given by 
Eqs. (1.16) and (1.19). 

To prove Theorem 2 we expand h(x) in a Taylor series around x = 4, i.e., 

(1.14) h(x) = h (2 + (-)x 2)?1 
n=0 (2n + 1)! 

where we have 

(X - -)2- = _42(1 - 2x)+ _ ( I)(1)k4k[x(1 x)]k 

Putting 
00 

(1.15) h(x) = (1 - 2x) a bm[x(I -x)]m 
m=I 

we get 

(1.16) bm = OM(1 2 +() nt 4m 
vm (2v + 1)! \ml 

To proceed we will need an identity similar to (1.4), viz. 

(1.17) (I _ 
)n 

- Xn = (I - 2x) (n k 1 I-)k[x(I -x)] 
k 

k=O 

(1.17) follows easily from (1.4) when differentiating with respect to x. 
From (j) we conclude that 

(1.18) h(x) - h(l - x) = 2h(x). 
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Using (jjj) and (1.18) we get 

E0 h () (0)(_x E( 

1 

n k (1)[x1 x) 2h(x) =- n h)(O)I - 2x) [n1)2] k l) I)k[X(I -X)J . 

The coefficient bm in the expansion (1.15) is then given by 

(1.19) bm (1)m2l 1 ) 
n=2m+ 1 

Multiplying (1.15) with (1 - 2x) we get, using Lagrange's inversion formula, 

I2 d 2xm- I ()h(x) - 2h(x) ft 
(1.20) bm - 4bm-, m= {- ?' [i (-)m i 

When the function g(x) does not satisfy the conditions (j) and (jj) we may put 
h(x) = g(x - 2) - g(-x + 2) + (1- 2x)[g() - g(- 4)]. Then h(x) is antisym- 
metric around x = 2 and h(0) = h() h(1) = 0. 

If (jj) is not satisfied, then we have h(O) = -h(1) =# 0 (which is the case for 
h(x) = cos(7Tx)). We may avoid this difficulty by substituting h,(x) = h(x) - 

(1 - 2x)h(0). 
Finally let 

h(x) = G(g(x), g(1 - x)) - (1 - 2x)G(g(O), g(1)), 

where G(x, y) is a regular, antisymmetric function of x and y. Assuming that 
G(x, y) is "regular enough", then h(x) satisfies the conditions (j), (jj), and (jjj). All 
the remarks occurring in the end of Section 1 a are relevant also in this case. 

c. The General Case. From a study of the proofs of Theorems 1 and 2 it is obvious 
that we may formulate 

THEOREM 3. Let g(x) be a function satisfying the conditions 
(k) g(x) is neither symmetric nor antisymmetric but real when x is real, 
(kk) g(O) = g(1) = O, 
(kkk) g(x) may be expanded in a Taylor series around x = 0, and the radius of 

convergence is greater than 1. 
Then g(x) has an expansion of the form 

00 00 

g(x) = : am[x(I -x)] m + (I1-2x) : bm[x(I -x)] m 
m=1 m=1 

valid at least in the interval [0, 1]. Expressions for the coefficients am and bm are given 
by obvious generalizations of Eqs. (1.3) and (1.16). 

When g(x) does not satisfy the condition (kk) we simply substitute 

g1(x) = g(x) -[2(g(0) + g(1)) + '(g(0) - g(1))(1 - 2x)]. 

2. Approximation in the L2-norm. 
a. The Symmetric Case. Let f(x) be a function which satisfies the conditions (i), 

(ii), and (iii) in Section la. In many cases already the truncated series in Eq. (1.2) 
may be used for computational purposes. We may however improve this result by 
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approximating in the L2-norm, i.e., we consider min D, (w), where 

(2.1) Di (w) j {f(x) - I C,,k[X(l - x)]n} x(1 - d 

and q {O0, 1, 2,... 
The resulting linear equation system yielding the coefficients cn,k will be (with 

r= 1,2,...,k) 

(2.2) :: cn,kun,r+q =|f(x) [x(l _-x)] rq dX, 

where 

(2.3) uJ 1J[x(1 -x)]i+jdx -+ 
0 ~~~~(2i?+2j ?1)( 2i+ i) 

The inversion of the matrices Dn= {uij} (with i = 0, 1,2,.. .,n; j=s,s+ 1,..., 
s + n; s e {0, 1, 2,... }) will be treated in Sections 4 and 5. 

A remaining problem, with many solutions, is how to determine numerical high 
precision values of the integrals 

(2.4) Ij= ff(x)[x(I -x)]jdx; j = 1, 2, 3. 

That problem will be treated in Section 3. 
b. The Antisymmetric Case. Let h(x) be a function satisfying the conditions (j), 

(jj), and (jjj) in Section lb. We consider min D2(w), where 

r ~~~~k2 
(2.5) D2(w) f {h(x) -(1 - 2x) E Cn ,k[x(1- - 

andq{E0,1,2,...}. 
The resulting linear equation system yielding the coefficients Cn,k will be (with 

r= 1,2,...,k) 
k 

(2.6) : Cn,kUn,r+q h(x)(1 -2x)[x(1 -x)] r+q dx 

where 

UJij f (1- 2x)2[x(1 - x)]i+jdx 

(2.7) I 1 

(2i+ 2j+ 3)(2i?+ 2j+ 1)? 

The inversion of the matrices E = {Uij,} (with i = 0, 1, 2,. . . ,n; = t, t + 1,.I.. 
t + n; t E {0, 1, 2,. . . }) will be treated in Sections 4 and 5. 

In Section 3 we will consider different techniques to determine numerical values of 
the integrals 

(2.8) Ii' =fh(x)(I - 2x)[x(I - x)]jdx, j = 1,2. 
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c. The General Case. Let the function g(x) satisfy the conditions (k), (kk), and 
(kkk) in Section Ic and consider min D (w), where q E {0, 1, 2,... } and 

D3( w) 

(2.9) fl {9(x) - (Cn k + (I - 2x)Cn,k)[X(l -X)]} Xq(l -Xyd 

The resulting equation systems yielding the coefficients Cn k and Cn,k will be (with 
r=- 1, 2,...,k) 

(2.10) C kUn r?q = _g( X)[ (1 dx 
n=10 

and 
k 

(2.11) : Cn,kUn,r+q g(x)(I - 2x)[x(1 - )] q dx- 

The equations (2.10) and (2.11) will be considered in detail in part II in connection 
with Bernstein polynomials. 

d. Approximations in L2 With Certain Restrictions. In many cases it is natural to 
consider min D2(w), min D22(w), and min D2(w) given certain restrictions. We may, 
e.g., consider 

(2.12) ~ ~~~~~~~ |l (()- C [(-X)] n} Xq(1 -X)d 

2~~~~ 2nk =f2 
n n I( y 

min f t(X) 2 Cn,k[X(l -x) X } x4( - X 

(2.12)n= 

(2.13) l k I 

n=1 4~~~~~~~1 

ln1 (2n + 1)(2fl) 

We will consider (2.12) and (2.13) in part II, when approximatinge(x)= sin(rx) 
with restrictions. 

Another natural approximation technique would be to equalize all the moments. 
We then get the equation system 

n=1 

(2-10) k n ( l)=,1 ..k) 

?n=(n+1) (2n++1{ +J 
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3. Calculation of the Associated Integrals. We will consider different techniques to 
determine numerical values of the associated integrals occurring in (2.4) and (2.8). 
We start with 

a. The Symmetric Case. In some cases we may use a recursion formula for Ij or a 
closed expression (See Application in Section 6, (6.22).) When it is easy to determine 
numerically the coefficients am defined by (1.2), (e.g., by using a recursion formula) 
then 

00 

(3.1) a m 2 

m(. (2m + 2j + 1) m+ 

Expanding f(x) in a Taylor series around x = 0, we get 

(3.2) I= fI () I 

Putting u = x(l - x) and making use of the symmetry, we get 

(3.3) 1 - (I- u) du 
221? 1 20 2 (1 - U)"1'2 

Making an obvious expansion of ft( - I 
(- u)1/2) in (3.3), we obtain 

n=O (2n)! 221 2n + 2j + 2)( n + + I )( +) 

In some cases we may also use a Fourier expansion. For reasons of symmetry we 
must have 

00 

(3.5) f(x) -/P + 2 [asin((2n - l),rx) + f3ncos(2nrx)], 
n = 1 

where Po + En= 1fn 0 ? and x E [0, 1]. 
The expansion in (3.5) is of special importance when an and 8n converge fast 

towards zero. That is, e.g., the case when f(x) = sn(2K(k)x, k); see [7, p. 25]. 
To calculate iJ, making use of the expansion (3.5), we must know how to calculate 

the integrals 

(3.6) S2,1== cos(2nrx)[x(l - x)]jdx 

and 

(3.7) T2n-1=f'sin((2n - l)Smx)[x(l -x)]jdx. 

However S2" ,j and T_ 1,J satisfy the recurrence relations 

_ 2j(2j- 1) 
2n,j-1 

j(j- 
)2n,j-2 (3 .8) S2n, Ij (2n )2 S2,jI 

(2n) 2 2,- 



A GENERAL METHOD OF APPROXIMATION. PART I 575 

and 

(3.9) T _ 2j(2j- 1) T j(j- 1) 
(2n - 1)2772 ,j-1 (2n - 1)2272 

Starting values are given by 

S2,n,0 0 S2n,1 (2n 77) 

'r 0 2 T _ 
n - 2 -_2n- (2n -) 

c. The Antisymmetric Case. We consider next the integrals Ij' defined by (2.8). 
When it is easy to calculate the coefficients bm in the expansion (1.15) we easily get 

00 
1 

(3.10) 2 bm 12m+2j 
m=1 (2m + 2j + 3)(2m + 2j + 1)(rn?.J 

But we may also use the expansion in (1.14). After a routine calculation we get 

l 2n + 2 
00 h(2n+l)(2) n + 1 (3.1 1) I; -~ -+l / 

1)!( n + j + 2 ( < 

Expanding h(x) in a Taylor series around x 0 O, we obtain 

(3.12) Ij n h(n+(+) [ / 1 - ?2?1)] 
n=1 n!.(n +2j +2) n +2j + I\ In +2 

Even in this case we may sometimes use a Fourier series. For reasons of asymmetry 
we must have 

00 

(3.13) h(x) = 2 [ynsin(2n7rx) + Sncos((2n -1)Tx)], 
n= I 

where Y:n I 3n = 0 and x E [0, 1]. 
To calculate IJ', using the expansion (3.13), we must be able to calculate 

(3.14) Q2n-,J (1 - 2x)cos((2n - 1)7Tx)[x(1 - x)]jdx 

and 

(3.15) R2n fJ(l (- 2x)sin(2n7Tx)[x(1 -x)]jdx. 

However, Q2n- 1 j and R2n,J satisfy the recurrence relations 

(3.16) Q2n-1,=j 2(2j 1+ 
+ 1) 

Q2n-i,j-i - (2 1)2 Q2n-l,j-2 
(2n - I1)2.7T2 (2n - 1)27T2 
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and 

2j(2j1+ 1R -1( 1- 
(3.17) R2n,j = (2 R)2 2n,j- 1 2 R2n(j-2) 

Starting values are given by 

4 24 2 

(2n -1) 2)T2 Q2n-l,1 (2 -1)47T4 (2 -1)27T2 

R2n n I 2nj 2n 3- (n 

4. Analysis of the Associated Matrices and Determinants. We now turn to the most 
difficult section of this paper, namely the analysis of the associated Hankel matrices 
occurring in (2.2) and (2.6). A well-known and well-analyzed example of a Hankel 
matrix is the Hilbert matrix Hn with general element hjk = (j + k - 1)-' (j, k = 
1,2,..., n). Both the determinant detHn and the inverse matrix H-1 are exactly 
known. (See Savage and Lukacs [5].) The Hilbert matrix has a settled bad reputation 
in regard to numerical difficulties. The matrices occurring in (2.2) and (2.6) are no 
better. 

Consider the finite square Hankel matrix Dn s of order (n + 1) defined by 

UOs UO,s?+ l . .. UO,s+n 

Us I Ul,s+ I 
. 

Ul,s+n 

(4.1) Dn, - U2,s U2,s+l I . .* U2,s+n ; s fE- {0 1, 2 ..*. 

un,s un,s+l un,s+n 

where 

u f [x(1 - x)]'+jdx 1 
0 

~~~~~~(2i?2j l)2j 7') 
i+ 

We wish to calculate explicitly D,7I = {djk) (j, k = 0, 1,...,n) and Dns= 
Det(Dn,s). This may be done noting that the Hankel matrix Dn s is also a moment 
matrix. To see this we rewrite the coefficients uij in the following way, putting 
x( - x) = z, 

uj [x( l- x)] i+jdx = 21 [X(l l-x)] i+jdx 

(4.2) 1/4 Zi+j-szs 

1O (4_z ) 1/2 4 

The coefficients uij may thus be interpreted as moments belonging to the weight 
function w(z) = zS(7 

- 
Z)-1/2; z E [0, i + j >S. 
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Let Qn ,(x) and qn 5(x) be the associated orthogonal and orthonormal polynomi- 
als defined by the determinants (see, e.g., Cramer [3, p. 132]) 

Uo s Uo,s+l ... UO,s+n 

uls Ul,s+l ... Uls+n 

(4.3) Qn,s(x) - 

un- 1s ... un- ls+n 

1 X x n 

(4.4) q x)- Qn,,(X) . D DeD n,() 
(Dn sDn_l,s)1, Dns = (n,s)- 

The polynomials Qn,s(x) and qn,s(x) satisfy the following equations, where i =#j, 

(4+5) ? jo4Qi s(X)Qj s(X) 
Xs x 

_ Xsd oQs(4)Qft4)( )/X (4.5) 1 / ( )Q 's d X) dx. 
'~j Q1,~x)Q1,~ I(- X)1/2 (14 -X)1/2 

The orthogonal polynomials associated with the weight function w(x)= 
(1 -x)P-qx4-l are known as Jacobi polynomials and are denoted by Gn( p, q, x). 
They may be standardized so that the coefficients of xn equal 1 [1, p. 774]. The 
explicit expression is then 

2( q n ) X_ _ _ __2 

(4.7) Gn(P,q', dx (-l) ) + 2 - ) dx. 

The normalizing constant mi is in this case determined by 

(4.8) h JfIG (p,,)w(x) dx n!P(n + q)P(n + p)F(n +p p-q+ 1) 

Using (4.5) and (4.6), we may identify the polynomials and get 

14 9)\ Qns 2 ,5 fx/) = 1 5ns 

(41)2s?1/2 q,1,t4- ) = lD D 12=h/ Gn(s?+4, S+1, X). 

An identification of the coefficients of xn in (4.10) yields 

explici 1 t (2n+s+x)P2(2n+s+ 2) 

(4.1) 22s?42n q n!(n +s + l)T(n + s + 2)P(n + m) 

We note the special case s 2, which corresponds to q = 0 in (2.1) (w(x) = 

xq( - x)4 = 1). We get, after a little algebra, 
(4.12) 1 ) pn+ 2(2n ) 

+5 4n+ 
2 Dn+ )(Q n Is 
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i.e., 

(4.13) L- 1I (2r+3)(2r+)( 2r ) 1-n2 
r=0 \2r +2/\2r 

We will now show how to find explicit expressions of the elements of Dn-7. Of 
special importance is the case s = 2, which we will use to find approximations of 
sin(7Tx) when x E [0, 1]; see Section 6. 

Some of the elements of Dn- ] may be obtained quite easily. Let Dn i be the first 
minor obtained by deleting the ith row and the jth column of the determinant Dn s 
We expand the polynomial Qn,s(x) (defined by the determinant in (4.3)) with respect 
to the last row, i.e., with respect to powers of x. Then 

n 

(4.14) Q,5(X) =2 (-l )n+t'Dnn+ l,v+ lxv; Dnn+ 1,n+ 1 
n 

v=O 

Using (4.9) and (4.1 1), we get, upon identifying corresponding powers of x, 

Dn+ Dl,k+ 
I (4n + 2s + 1)4s?+k+nr(2n + s + )F(s + 2 + n + k) (n 

n ,s22 Dns n!F(n +s + )F(n+ )F(s + I+ k) kJ 

Now define 

q0,s(x) zoo 0 0 ... 0 1 

ql,s(x) z10 z11 0 ... 0 x 

(4.16) q2,s(x) Z20 Z21 Z22 0 x 

qn,s(x) ZnO Znl Zn2 ... Znn x 

Putting 

(4.17) Zj}, 

we may use the Choleski factorization [6, p. 8] and get the important relation 

(4.18) D-1 - L,7[L-1 

Let the general element of Dn- ] be dj k (1j k = 0, 1, 2,. . ., n). Then 
n 

(4.19) dj,k E ZrjZrk- 
r=max(j, k) 

We therefore have to determine the elements Zrk. This may be done using (4.4) and 
(4.15). After some calculation we get 

(4.20)zflk(n!F'(n?+s?+1)(4n?+2s 1) /2 
22k+sr(s?1 '+fnlk) n(f~+ (4.20) Znk = ( (++(r )) ( 

2 n k(k)(-)n+k 

Inserted in (4.19), this yields 
n r'(r + s + 1)(4r + 2s + 1)4k+_+sr(s + 2 + r + k)r(s + ? + r +j) d, k= 2 

(4.21) k- 
niax(j ) F r(r + s + 1)r(r + 1)r(s + I + k)r(s + I +j)r! 

(k i ( 
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For s = 2 the elements d] k (and dkj) are given by 
n 

dJ,k ( 1)j+k 2 (4r + 5) 
r max(j, k) 

(4.22) (r + k + 2)( r +J 2 )(2r + k + 2 )(2r + 2 + 4) ( r) (r) 

(2r r + 24) 

(Accurate values of D,72 (n = 0,1,... ,6) and D - I (n = 0,1,... ,9) are given in [7, 
pp. 30-34].) In Table I we give the matrices D - I for n = 0, 1, .. ,5. 

TABLE I 

Table of the matrices Dn-2 

30 140 630 2772 12012 51480 

140 630 2772 12012 51480 218790 

D5.2 
630 2772 12012 51480 218790 923780 

I I I I I 
2772 12012 51480 218790 923780 3879876 

12012 51480 218790 923780 3879876 16224936 
1 1 I I I _ 

51480 218790 923780 3879876 16224936 676039(H) 

D(,2' (30) 

D -21 | 
840 - 3780 

-_3780 176401 

6300 -69300 180180 
D2.21 = -69300 803880 -2t62160 

I 0180 -2162160 5945940 

27720 -540540 3243240 - 6126120 
D-1 - 540540 1 1171 160 - 69549480 134774640 

3.2 3243240 -69549480 443963520 -876035160 
- 6126120 134774640 -876035160 1752070320 

90090 - 2702700 27567540 - 116396280 174594420 
- 2702700 86126040 - 912791880 3957473520 -6052606560 

D '4.2 = 27567540 -912791880 9930440520 -43881397560 68091823800 
- 116396280 3957473520 -43881397560 196709713200 -308682934560 

1 74594420 - 6052606560 6809 1823800 - 308682934560 488747979720) 

240240 -10210200 155195040 -1086365280 3569485920 -4461857400 
-10210200 461501040 -7294166880 52455923520 -175797181560 223092870000 

D-1 | _ 155195040 -7294166880 118413815520 -868355047560 2953749598800 -3792578790000 
5.2 -1086365280 52455923520 -868355047560 6462709453200 -22239682024560 288235988040'00 

3569485920 -175797181560 2953749598800 -22239682024560 77247244794720 -100882595814000 
-4461857400 223092870000 -3792578790000 28823598804000 -100882595814000 132588554498400 

In a similar way we consider the matrix En tdefined by 

Uo t Uot?+ I * UO,t+n 

U1lt UI,t+ I . . 
Ul,t+n 

(4.23) Ent= U2 t U2,t+ I . 
. 

U2,t+n , t E {O, 1,... ), 

Un, t Un,t+ 1 ... Un,t+n 

where 

u11f1(i -2x)2[X(l X)]i3jdj 1 / i+2j) 
0 

~~~~~~~~~~~~(2i + 2j + 3)(2i + 2j + 1) 1 
+ 
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Let the general element of En 2 be ej k (j, k = 0, 1, 2,.. ., n). We may then prove, in a 
similar way as for D,72, that 

eJ, k I)j E 
r= max(j, k) 

(4.24) ? 
2 + 2k + 6 )(2r + 2J + 6 )( + k + 3)( r +J + 3)( r )r 

(r?+ 3)(2r?+6)(2r?+2) 
( )(r + 3 )(r + I) 

(Accurate values of En2 (n = 0,1,... ,4) and En2 (n = 0,1,... ,9) are given in [7, 
pp. 35-40].) 

In Table II we give the matrices En for n = 0, 1,. . . , 5. Those interested in details 
may read Wrigge, Fransen and Borenius [6, pp. 20-22, 26-28]. 

TABLE II 

Table of the matrices En 

I I I I ___n 

210 1260 6930 36036 180180 875160 
1 1 1 1 1 1 

1260 6930 36036 180180 875160 4157010 
5. 2 I I I _ _ 

6930 36036 180180 875160 4157010 19399380 

36036 180180 875160 41710 19399380 89237148 
1800 1 1 1 1 4 1 

180180 875160 4157010 19399380 89237148 405623400 
1 1 1 1 1 1 

875160 4157010 19399380 89237148 405623400 1825305300 

E = (210) 

E-21 i- 2520 -13860) , -13860 83160! 

13860 - 180180 540540 
E-21 = -180180 2522520 -7927920 

540540 -7927920 25765740 

51480 -1158300 7876440 -16628040 

E-21 -1 158300 27953640 -198661320 432329040 
3.2 - 7876440 -198661320 1456266240 -3242467800 

-16628040 432329040 -3242467800 7349593680 

150150 -5105100 58198140 -271591320 446185740 
-5105100 185825640 -2211529320 10630860240 -17847429600 

E4,2 = 58198140 -2211529320 27120333240 -133273740600 227554727400 

-271591320 10630860240 -133273740600 666174709200 -1152943952160 
446185740 -17847429600 227554727400 - 1152943952160 2017651916280 

371280 -17635800 296281440 -2271491040 8112468000 - 10951831800 
-17635800 895898640 -15702916320 123958511040 -452270091000 620603802000 

E-1 - i_ 296281440 -15702916320 283456686240 -2286499105800 8481585294000 -11791472238000 
5.2 -2271491040 123958511040 -2286499ID5800 18753267776880 -70486800711600 99048366799200 

8112468000 - 452270091000 8481585294000 - 70486800711600 267797436160800 -379685406063600 
- 10951831800 620603802000 - 11791472238000 99048366799200 -379685406063600 542407722948000 

The result of this section may be summed up in 

THEOREM 4. Let ui ,= fo [x(1 - x)]' J dx and Uj j = Jo' (1 - 2X)2[x(1 - x)]'+j dx. 
Define the matrices Dn,s = {(Ui j)), i = O, 1, 2 ... , n; j = s, s + 1, s + n, and En,t 

i = 0,1,.. .,n; j = t, t + 1,.. .,t + n; s, t E {0, 1, 2,... .,n}. Let d n,s and 
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e be the general elements of Dn-J, and En-,, with j, k = 0, 1, 2,. . .,n. Then 

dn s n rF(r + s + 1)(4r + 2s + 1)4k+J+S(s + r + k)F(s + r +j) 

rmx(,) (ks )(r ]F(? I kFs+ jr r=max(v,k) F(r + s + ')]F(r + )r +I + k)]F(s + I +j)r! 

X (k)( )(- I)k+j' 

enj= 
n rF(r+ t+ 1)(4r+ 2t+ 3)4k+J+tF(t+ 3/2 + r+ k)F(t+ 3/2 + rj) 

remax(j,k) F(r + t + 3/2)F(r + 3/2)F(t + I + k)F(t + I +j)r! 

X (k)( )(- I)k+j- 

Define the determinants Dn,s = Det(Dn,s) and En,t = Det(En,t). Then 

D n!F(n + s + 1)F(n + s + 4)F(n + 4) 
fn,s 22s+ 142n(2n + s + 2 )F2(2n + s + 2 

Dn-I's, 

E n!F(n + t + 1)F(n + t + 3/2)F(n + 3/2)E 
n,t 22t+ 142n(2n + t + 3/2) F2(2n + t + 3/2) nI, 

5. Calculation of Determinants and Inverse Matrices. The determinants Dn,2 and 

En,2 are calculated using the formulae 

n (5.1) DE = Li (2r+3)(4r+)(4 r + ) 

n2 r=o 2 r +2 2 r+i 
(5.2) En-2 fI (r + 2)( r+2)(2 
See [6, p. 22]. 

When calculating the inverse matrices we may choose one of several methods. We 
may, e.g., use a recursion technique (i.e., Householder's method). 

Let Cn,2 denote any one of the square matrices Dn2 and E n2 of order (n + 1). We 
start making a partition of Cn,21 i.e., 

(5.3) C ,=Cn-1,12 Cn] 

[Cn 'Yn] 

Here Cn is a column vector (of order n) and yn a rational number. Denoting 
Cn,2 = det Cn 2 we finally get the recursion formula 

(5.4) C [ O ] + C C[ n 1C 2 I n][ CnC-l2 i] 

(See e.g. F. Ayres [2, pp. 56-58].) 
Thus we may start with C`2 = D`2' or E 2'. A repeated use of (5.4) then yields the 

matrices Dk 2 and Ek 2 (k = 2, 3,. . ., n). (See [7, pp. 29-40], where n = 9.) 
Alternatively, we may also use the formulae (4.22) and (4.24) which give explicit 

expressions of the general elements of Dn- and E-. 
But we can do better. The drawback of the recursion method given by (5.4) is that 

to calculate, e.g., D6-2' we have to calculate all Dk 2 with k < 5. Therefore a direct 
method is to be preferred. Such a method may be obtained by a clever use of the 
Christoffel-Darboux formula [1, p. 785], which applied to the orthonormal functions 
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qn,s(X) (Eq. (4.4)) may be stated as 
n 

Zn,n [qn+l,s(x)qn,s(y) qnJsX)qn+1jsY)1 
(5.5) q zx)qm,(y)n 

m-O Zn+ l ,n+ I y 

Multiplying both sides of (5.5) with (x - y) and identifying the coefficients of xjyk, 
we get 

(5.6) d711,k k-d k-1 = -~ (zjn+lljznk - Zn jZn+l,k), 
Zn+',n+I 

where we have written d1 k = djn,s to point out the dependence of the parameters n 
and s. Putting s = 2, we get 

dj1 l,k 
- d,k- = (_ 1)k+j 

(5.7) (k-j)(n + 1)(n + 3)( n(n) (2n+2j+4 ) ( 2n+2k+4 n + j + 2)(n + k + 2 

2(n + I -j)(n + I -k)( 2n + 4 )( 2n ) 

The corresponding formula for ej,k (with t = 2) is 

ej-1, k ej, k- I (_ I )k 

(5.8) (k -)(n + l)2 n ( n ) 2n + 2j + 6 2n + 2k + 6 n+j + 3 n + k + 3 (5.8) X J ViJ k n +j?+?3 n+k+3 I j+2 k+2 

12n?+6 a2n?+2 
2(nI -j)(n -k) + 3 n?+ I 

The calculation of dj1k may be given by 

Algorithm D. Let the general matrix element of Dn-2' be d k (j, k = O, 1, 2, ..,n). 
The steps in the calculation of dJ,k are then as follows: 

I. 

dn,k+l1= 
2(n - k)(2n + 2k + 5) 

dn,k; k=-0, 1,2, .,n-1 

Starting values are given by 

(4n ) (2n + )( n + 2 ) (n 2) 
dno 

n 
=n (-1 22n 

n 

II. Calculate the elements of the lower right-half of the matrix using 
dj l,k- d,k-1 (_ I)k+j 

(k -j)(n?+ 1)(n +3)n( n)( )2n+2j4 )( 
4 2n +2k+4) n?j+2 )n?+k?+2) 

X i k )(n + j + 2 )(2n + 2k + 2 n n 

2(n+ I -j)(n+ I-k) n+ 2nI 

III. Calculate djo = do j (] = 0, 1, 2,... ,n) using 

dj o = y (_ +1j71 (2n + 3 + 2i)(2n + 4 - 2i) 
d10 (-i)' ~4(j +3)!]! 

IV. Use step II to calculate the elements of the upper left-half of the matrix. 
V. In all steps we make use of the symmetry dj1k = dk,j. 
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A similar scheme of calculation exists for the elements ej,k Of the matrix En 2, ViZ, 

Algorithm E. Let the general matrix element of E`j be ej k (j, k = 0, 1, 2,... ,n). 
The steps in the calculation of ej,k are then as follows: 

I. 

e -k+ I 2(n - 
k)(2n + 2k + 7) 

en,k k = O, I, 2, ., - . 
n,k+1 (k+l1)(k +3) nk ,,,.,1 

Starting values are given by 

(4n +7) 4n + 6 2n +3 
J( 2 

3 
en, = (-1) ~ ( 2n + 2 

n+1 I 
II. Calculate the elements of the lower right-half of the matrix using 

e.-1k -e,k_ I= (-1)k+J 

x(k -I)(n +1) 2(n)(n) (2n?+21+6)( n+ k +3)(j +2)( k +2) i2( n n +j 2 3 n + k + 3 ? + 2 k + 2 

( i)( ) ( ~~n + 6 
) ( 2n + 2 

2(n I -)(n 'Ik n+3I n?1 I 

III. Calculate ej,0 = eO1 using 

*ll'+ ' (2n + 5 + 2i)(2n + 4 - 2i) 
e 

= (-1)' 4j!(j+3)! 

IV. Use step II to calculate the elements of the upper left-half of the matrix. 
V. In all steps we make use of the symmetry ej1k = 

ek,j. 

We managed to find still another method to calculate the elements of D,72' and 
E`j making use of a special partition technique. The great advantage of this method 
is that we can describe both cases with one formula using an idempotent number /3 
(i.e. /32 = /3). This result may be summarized in 

THEOREM 5. Let Cn-2' denote any one of the matrices Dn-2' and E-', and let the 
general element of Cn27 be yj, k (j, k 0 O, 1, 2, . ., n). Then 

Yj, k(I)j+k i11+1 (2n + 3 + 2 + 2i)(2n + 4-2i) 
2(j + k + 1)! (]j + k + 3)!kt (k + 2)! 1, 

where 
k 

Xj,k = E R,T(j - k + I+2v) 
v=O 

k v-1 

X fl (j + I + i)(j + 3 + i) f (k-i)(k + 2-i) 
i=v+ I i-O 

and 
j+ ?+m 

Rm = I (2n + 3 + 2/3 + 2i)(2n + 4-2i); 
i=j+2 

k+I-m 

Tm= i. (2n + I + 2/ + 2i)(2n + 6-2i). 
i=2 

The case /3 0 corresponds to Dn , and the case /3 1 corresponds to E`j. 
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(The products in Theorem 5 are interpreted as 1 if the upper index is less than the 
lower.) 

6. Application. In this section we will apply our method to the case f(x) = sin(Q7x), 
f(x) = cos(2,rx) and h(x) = sin(27Tx), h(x) = cos(vx); x E [0, 1]. (In [7, pp. 23-26] 
we successfully approximated the Jacobian elliptic function sn(2K(k)x, k) for 
0 < k < 0.25.) Consider the expansions 

00 

(6.1) sin(7Tx) = I a0[x(1 -x); 

n=1 

(see Lyusternik et al. [4, p. 82]) and 
00 

(6.2) sin(27rx) = (1 - 2x) 
: 

bn[x( -X)]n. 
n=1 

We will also need the coefficients An defined by 
00 

(6.3) sin2(vx) = An[x(l -X)]n. 
n=2 

Since d2sin(7Tx)/dx2 = -r sin(,rx), we get, differentiating (6.1) twice and identify- 
ing the coefficients of [x(l - x)]n, the recurrence relation 

(6.4) (n + 2)(n + l)an+2 = (2n + 2)(2n + l)an+1 - 2an; al = a2 = 7T 

Exact and approximate values of a' (i = 1(1)10 and i = 1(1)20) are given in [6, p. 35] 
and [7, p. 41]. Note that an converges fast towards zero. We have, e.g., a20 9.1 X 
10-29. We solve the recurrence relation (6.4) using (1.9). Thus 

0T 
n 

2n+2 
/, 

\(-1')0 
n-2n-2v 

(6.5) a2n I 71 2 2n +I 2v) (2n-1 2J 

and 

(6.6) a2n+2 = 2 (2 + 2 + 2 ( 1) 2 )2 2n + 2 __ O 2v + I (2n -2v)! 

Using (1.3) we obtain 

(6.7) an (-l)y 0 0 n ( 1)k4 

(1.6) yields the alternative form 

(6.8) a= (_1) 00 (1)k 2k+1 
( ) n 2 n! k=n (2k)(2k -1) (2k -n + 1)(2k -2n + 1)! 

To obtain a recurrence relation for the coefficients bn we use the coefficients An 
defined by (6.3). We note that 

dX 2 sin2 (Tx) = 27T - 4vT2sin2( x). 

Then 

(6.9) (n + 2)(n + I)An+2 = (2n + 2)(2n + I)An+ -47r2An; (6.9) 
~~~~~A 2 

= 2, 
A3 =2,2. 
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Differentiating (6.3) with respect to x and identifying coefficients, we get 

(6.10) b_ -A 

bn thus satisfies the recurrence relation 

(6.11) n(n + l)bn+l = 2n(2n + l)bn- 47r2bn1; b, = 2T, b2 = 6iT. 

Using (1.8), we get 

(6.12) A2+1=7 I ( 2n + 2v - I (1) nv(2 )2n2v+I 
2n I2n+1 I \ 2v - / (2n -2v + 1)! 

and 

IT nT 2n + 2v + 1 '(1)n-v(2'iT)2n-2v+I 
(6.13) A2n+2 

- 
2n +2 2( 2v (2n - 2v + 1)! 

From (6.10), (6.12), and (6.13) we get finite expressions for b2n and b2n +I 
The expansions for cos(7ix) and cos(2Trx) are deduced in a similar way. We put 

00 

(6.14) cos(7Tx) = (1 - 2x) 2 f3n[x(l -x)] 
n=O 

and 
00 

(6.15) cos(2iTx) - 
2 an[x(l -x)] - 

n=O 

Differentiating (6.1) with respect to x, we get 

(6.16) An- I nan/'nT. 
Using (6.4), it is easy to prove that fln satisfies the recurrence relation 

(6.17) n(n + l)f3+l = 2n(2n + l)flin- 2fln-l; Po = 1, f3 = 2. 

A differentiation of (6.15) with respect to x yields 

(6.18) b X -nanl/2. 

Using (6.1 1), we get the recurrence relation 

(6.19) (n + 2)(n + 0)an+2 = (2n + 2)(2n + ')an+ - 4T2an; ao 1, a= 0. 

We next turn our interest to approximations in L2, i.e., we consider min D2(w) and 
min D22(w), where 

(6.20) Di(w) {sin(x) - 2 Cn,k[X(l - 0 p7~~=1J 

and 

V ~~~~~~k2 
(6.21) D2 (w) f {sin(2 Tx) - (I - 2x) E Cn,k[x(l x)]n dx 

n=1 

The associated integrals 

Ij f' sin(Qix)[x(1 - x)] jdx 
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and 

= f (1 - 2x)sin(2?Tx)[x(1 - x)]'dx 

are calculated from the recurrence formulae 

I_ 2j(2] - _ 1(1j- 12 4 
(6.22) I 2--1)?T2 )Ij-2; IO -- I- T3 

and 

(I = 2_j(2j_ +) _ _-(_ _ 1 2 I3 
(6.23) j,2(2]1) - 1(-1 _ 

I 4,g2 i-1I 4,.2 Ij-2' IO 
'T 2I 3 

Solving the equation systems (2.2) and (2.6) by inverting the matrices as described in 
Sections 4 and 5 we may formulate 

THEOREM 6. Let x e [0, 1], then we have the approximations 

sin (Tx) f3.141583993[x(1 - x)] + 3.141891945[x( -X)]2 

+ 1.112123058[x(1 - x)]3 + 0.219850867[x(1 - X)]4 

and 

[3.141592715257[x(1 - x)] + 3.141589575603[x(1 - X)]2 

sin(?Tx) t] +1.115524716287[x(1 - X)]3 + 0.204430015076[x(1 -X) 

L +0.024416348195[x(1 - x)]5. 

The absolute errors are less than 8 X 10-8, respectively 4 X 1O1-O. 

The corresponding relations for sin(2?Tx) are formulated in 

THEOREM 7. Let x E [0, 1], then we have the approximations 

sin(2'iTx) {(i - 2x){6.281856[x(1 - x)] + 18.902201[x(1 - x)]2} 

+ (I - 2x){20.829857[x(1 - X)]3 + 16.439719[x(1 -x)4 

and 

(I - 2x) {6.283217166[x(1 - x)] + 18.847760765 [x(1 - x)]2} 

sin(2,gx) + (1- 2x)21.523970874[x(1-_X)]3 

+ (I - 2x)2.12.922874461[x(1 - X)]4 + 6.154478369[x(1 - x)]5}. 

The absolute errors are less than 10', respectively 2 X 10-7 

To carry through the corresponding approximations for cos(7gx) and cos(2'ix) we 
must calculate the integrals 

(6.24) I f' [cos(2?Tx) - 1] [x(1 - x)]jdx 

and 

(6.25) I' =f (1- 2x)[cos(?Tx) - (1 - 2x)] [x(1 - x)]jdx. 
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We introduce the complementary integrals J) and JJ' defined by 

(6.26) JJ=f|cos(2?Tx) [x(1 -x)] J dx 

and 

(6.27) J=i, (I -2x)cos(gx)[x(1- x)]jdx. 

The integrals J1 and JJ' satisfy the recurrence relations 

(6.28) = 2j(2j- ) _ - }(- 1) 
I- 

,2 j- 
4,g2 

i- 

and 

(6.29) J, 2j(2] + 1) j(j - 1) T (6.29) j~~~ T2 1', I T2 ]i- 2 

Starting values are given by 

0 2 21 4T 2T4 T2 Jo=O?, J1 =- 22 and J? =-72y, J1 74 72- 

We finally get the following expressions for the integrals Ii and IJ 

(6.30) Ij=Jj- 

(2j + 1)( 2j) (2j + 3)(2j + 1)( 2) 

The approximations for cos(7Tx) are given in 

THEOREM 8. Let x E [0, 1], then 

) (I - 2x){I + 1.999999230[x(1 - x)] + 1.065228532[x(1 -x)]2} 

+ (I - 2x)t-.260400939[x(1 _ X)]3 + 0.038640515[x(1 - x)]43 

and 

Cos(?7X) 

{(1 - 2x){1 + 2.000000004489[x(1 - x)] + 1.065197545425[x(1 - x)12} 

+ (I - 2x){0.260796014285[x(1 - x)]3 + 0.036638801083[x(1 - 

+ (I - 2x)0.003502999395[x(I - X)]S. 

The absolute errors are less than 0.6 X 10-8, respectively 0.3 X 10'1. 

We have found the approximations of cos(2?Tx) of less value and prefer to 
compute cos(2 gx) from the formula cos(2 gx) = 2 cos2(?Tx) - 1, thereby using 
Theorem 8 to compute cos(7Tx). 

National Defence Research Institute 
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S-102 54, Stockholm, Sweden 



588 STAFFAN WRIGGE AND ARNE FRANStN 

1. M. ABRAMOWITZ & I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs and 
Mathematical Tables, Nat. Bur. Standards, Appl. Math. Series No. 55, U. S. Government Printing Office, 
Washington, D. C., 1964. 

2. F. AYREs, JR., Theory and Problems of Matrices, Schaum Publishing Company, 1962. 
3. H. CRAMtR, Mathematical Methods of Statistics, 10th ed., Princeton Univ. Press, Princeton, N. J., 

1963. 
4. L. A. LYUSTERNIK ET AL., Handbook for Computing Elementary Functions, Pergamon Press, New 

York, 1965. 
5. R. SAVAGE & E. LUKACS, "Tables of inverses of finite segments of the Hilbert matrix," Contributions 

to the Solution of Systems of Linear Equations and the Determination of Eigenvalues, Nat. Bur. Standards, 
Appl. Math. Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 105-108. 

6. S. WRIGGE, A. FRANStN & G. BORENIUS, Rapid Calculation of sin(x), FOA Rapport, C 10150-M8, 
National Defence Research Institute, S 104 50 Stockholm 80, Sweden, 1980. 

7. S. WRIGGE, A. FRANStN & G. BORENIUS, A General Method of Approximation, Particularly in L2, 
FOA Rapport C 10158-M8, National Defence Research Institute, S 104 50 Stockholm 80, Sweden, 1980. 

8. S. WRIGGE, A General Method of Approximation Associated with Bernstein Polynomials, FOA 
Rapport, C 10170-M8, National Defence Research Institute, S 104 50 Stockholm 80, Sweden, 1980. 


